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1. Probabilistic Resources 

Statistical reasoning must be capable of eliminating chance when the probability of events 

gets too small. If not, chance can be invoked to explain anything. Scientists rightly resist 

invoking the supernatural in scientific explanations for fear of committing a god-of-the-gaps 

fallacy (the fallacy of using God as a stop-gap for ignorance). Yet without some restriction on 

the use of chance, scientists are in danger of committing a logically equivalent fallacy—one we 

may call the chance-of-the-gaps fallacy. Chance, like God, can become a stop-gap for ignorance. 

For instance, in the movie This is Spinal Tap, one of the lead characters remarks that a former 

drummer in his band died by spontaneously combusting. Any one of us could this instant 

spontaneously combust if all the fast-moving air molecules in our vicinity suddenly converged 

on us. Such an event, however, is highly improbable, and we do not give it a second thought.  

Even so, high improbability by itself is not enough to preclude chance. After all, highly 

improbable events happen all the time. Flip a coin a thousand times, and you will participate in a 

highly improbable event. Indeed, just about anything that happens is highly improbable once we 

factor in all the ways what did happen could have happened. Mere improbability therefore fails 

to rule out chance. In addition, improbability needs to be conjoined with an independently given 
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pattern. An arrow shot randomly at a large blank wall will be highly unlikely to land at any one 

place on the wall. Yet land it must, and so some highly improbable event will be realized. But 

now fix a target on that wall and shoot the arrow. If the arrow lands in the target and the target is 

sufficiently small, then chance is no longer a reasonable explanation of the arrow’s trajectory.  

Highly improbable, independently patterned events are said to exhibit specified complexity. 

The term specified complexity has been around since 1973 when Leslie Orgel introduced it in 

connection with origins-of-life research: “Living organisms are distinguished by their specified 

complexity. Crystals such as granite fail to qualify as living because they lack complexity; 

mixtures of random polymers fail to qualify because they lack specificity.”1 More recently, Paul 

Davies has also used the term in connection with the origin of life:  “Living organisms are 

mysterious not for their complexity per se, but for their tightly specified complexity.”2 Events 

are specified if they exhibit an independently given pattern (cf. the target fixed on the wall). 

Events are complex to the degree that they are improbable. The identification of complexity with 

improbability here is straightforward. Imagine a combination lock. The more possibilities on the 

lock, the more complex the mechanism, and correspondingly the more improbable that it can be 

opened by chance. Note that the “complexity” in “specified complexity” has a particular 

probabilistic meaning and is not meant to exhaust the concept of complexity (Seth Lloyd, for 

instance, records dozens of types of complexity3).  

The most controversial claim in my writings is that specified complexity is a reliable 

empirical marker of intelligent agency.4 There are several places to criticize this claim. Elliott 

Sober criticizes it for failing to meet Bayesian standards of probabilistic coherence.5 Robin 

Collins criticizes it for hinging on an ill-defined conception of specification.6 Taner Edis 

criticizes it for admitting a crucial counterexample—the Darwinian mechanism of natural 

selection and random variation is supposed to provide a naturalistic mechanism for generating 

specified complexity.7 None of these criticisms holds up under scrutiny.8 Nevertheless, a 

persistent worry about small probability arguments remains: Given an independently given 

pattern, or specification, what level of improbability must be attained before chance can 
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legitimately be precluded? A wall so large that it cannot be missed and a target so large that 

covers half the wall, for instance, are hardly sufficient to preclude chance (or  “beginner’s luck”) 

as the reason for an archer’s success in hitting the target. The target needs to be small to preclude 

hitting it by chance.  

But how small is small enough? To answer this question we need the concept of a 

probabilistic resource. A probability is never small in isolation but only in relation to a set of 

probabilistic resources that describe the number of relevant ways an event might occur or be 

specified. There are thus two types of probabilistic resources, replicational and specificational. 

To see what is at stake, consider a wall so large that an archer cannot help but hit it. Next, let us 

say we learn that the archer hit some target fixed to the wall. We want to know whether the 

archer could reasonably have been expected to hit the target by chance. To determine this we 

need to know any other targets at which the archer might have been aiming. Also, we need to 

know how many arrows were in the archer’s quiver and might have been shot at the wall. The 

targets on the wall constitute the archer’s specificational resources. The arrows in the quiver 

constitute the archer’s replicational resources.  

Note that to determine the probability of hitting some target with some arrow by chance, 

specificational and replicational resources multiply: Suppose the probability of hitting any given 

target with any one arrow has probability no more than p. Suppose further there are N such 

targets and M arrows in the quiver. Then the probability of hitting any one of these N targets, 

taken collectively, with a single arrow by chance is bounded by Np, and the probability of hitting 

any of these N targets with at least one of the M arrows by chance is bounded by MNp. Thus to 

preclude chance for a probability p means precluding chance for a probability MNp once M 

replicational and N specificational resources have been factored in. In practice it is enough that 

MNp < 1/2 or p < 1/(2MN). The rationale here is that since factoring in all relevant probabilistic 

resources leaves us with an event of probability less than 1/2, that event is less probable than not, 

and consequently we should favor the opposite event, which is more probable than not and 

precludes it.9 
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To recap, probabilistic resources comprise the relevant ways an event can occur 

(replicational resources) and be specified (specificational resources). The important question 

therefore is not What is the probability of the event in question? but rather What does its 

probability become after all the relevant probabilistic resources have been factored in? 

Probabilities can never be considered in isolation, but must always be referred to a relevant 

reference class of possible replications and specifications. A seemingly improbable event can 

become quite probable when placed within the appropriate reference class of probabilistic 

resources. On the other hand, it may remain improbable even after all the relevant probabilistic 

resources have been factored in. If it remains improbable (and therefore complex) and if the 

event is also specified, then it exhibits specified complexity.  

 

 
2. Universal Probability Bounds 

In the observable universe, probabilistic resources come in very limited supplies. Within the 

known physical universe there are estimated around 1080 elementary particles. Moreover, the 

properties of matter are such that transitions from one physical state to another cannot occur at a 

rate faster than 1045 times per second. This frequency corresponds to the Planck time, which 

constitutes the smallest physically meaningful unit of time.10 Finally, the universe itself is about 

a billion times younger than 1025 seconds (assuming the universe is between ten and twenty 

billion years old). If we now assume that any specification of an event within the known physical 

universe requires at least one elementary particle to specify it and cannot be generated any faster 

than the Planck time, then these cosmological constraints imply that the total number of 

specified events throughout cosmic history cannot exceed  

1080 x 1045 x 1025 = 10150. 

It follows that any specified event of probability less than 1 in 10150 will remain improbable 

even after all conceivable probabilistic resources from the observable universe have been 

factored in. A probability of 1 in 10150 is therefore a universal probability bound.11 A universal 
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probability bound is impervious to all available probabilistic resources that may be brought 

against it. Indeed, all the probabilistic resources in the known physical world cannot conspire to 

render remotely probable an event whose probability is less than this universal probability 

bound. The universal probability bound of 1 in 10150 is the most conservative in the literature. 

The French mathematician Emile Borel proposed 1 in 1050 as a universal probability bound 

below which chance could definitively be precluded (i.e., any specified event as improbable as 

this could never be attributed to chance).12 Cryptographers assess the security of cryptosystems 

in terms of a brute force attack that employs as many probabilistic resources as are available in 

the universe to break a cryptosystem by chance. In its report on the role of cryptography in 

securing the information society, the National Research Council set 1 in 1094 as its universal 

probability bound for ensuring the security of cryptosystems against chance-based attacks.13 

Such levels of improbability are easily attained by real physical systems. It follows that if such 

systems are also specified and if specified complexity is a reliable empirical marker of 

intelligence, then these systems are designed.  

Implicit in a universal probability bound such as 10–150 is that the universe is too small a 

place to generate specified complexity by sheer exhaustion of possibilities. Stuart Kauffman 

develops this theme at length in his book Investigations.14 In one of his examples (and there are 

many like it throughout the book), he considers the number of possible proteins of length 200 

(i.e., 20200 or approximately 10260) and the maximum number of pairwise collisions of particles 

throughout the history of the universe (he estimates 10193 total collisions supposing the reaction 

rate for collisions can be measured in femtoseconds). Kauffman concludes: “The known universe 

has not had time since the big bang to create all possible proteins of length 200 [even] once.”15 

To emphasize this point, he notes: “It would take at least 10 to the 67th times the current lifetime 

of the universe for the universe to manage to make all possible proteins of length 200 at least 

once.”16  

Kauffman even has a name for numbers that are so big that they are beyond the reach of 

operations performable by and within the universe—he refers to them as transfinite. For 
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instance, in discussing a small discrete dynamical system whose dynamics are nonetheless so 

complicated that they cannot be computed, he writes: “There is a sense in which the 

computations are transfinite—not infinite, but so vastly large that they cannot be carried out by 

any computational system in the universe.”17 Kauffman justifies such proscriptive claims in 

exactly the same terms that I justified the universal probability bound a moment ago. Thus as 

justification he looks to the Planck time, the Planck length, the radius of the universe, the 

number of particles in the universe, and the rate at which particles can change states.18 

Kauffman’s idea of transfinite numbers is insightful, but the actual term is infelicitous because it 

already has currency within mathematics, where transfinite numbers are by definition infinite (in 

fact, the transfinite numbers of transfinite arithmetic can assume any infinite cardinality 

whatsoever).19 I therefore propose to call such numbers hyperfinite numbers.20   

Kauffman often writes about the universe being unable to exhaust some set of possibilities. 

Yet at other times he puts an adjective in front of the word universe, claiming it is the known 

universe that is unable to exhaust some set of possibilities.21 Is there a difference between the 

universe (no adjective in front) and the known or observable universe (adjective in front)? To be 

sure, there is no empirical difference. Our best scientific observations tell us that the world 

surrounding us appears quite limited. Indeed, the size, duration, and composition of the known 

universe are such that 10150 is a hyperfinite number. For instance, if the universe were a giant 

computer, it could perform no more than this number of operations (quantum computation, by 

exploiting superposition of quantum states, enriches the operations performable by an ordinary 

computer but cannot change their number); if the universe were devoted entirely to generating 

specifications, this number would set an upper bound; if cryptographers confine themselves to 

brute-force methods on ordinary computers to test cryptographic keys, the number of keys they 

can test will always be less than this number.  

But what if the universe is in fact much bigger than the known universe? What if the known 

universe is but an infinitesimal speck within the actual universe? Alternatively, what if the 

known universe is but one of many possible universes, each of which is as real as the known 
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universe but causally inaccessible to it? If so, are not the probabilistic resources needed to 

eliminate chance vastly increased and is not the validity of 10–150 as a universal probability bound 

thrown into question? This line of reasoning has gained widespread currency among scientists 

and philosophers in recent years. In this paper I will to argue that this line of reasoning is fatally 

flawed. Indeed, I will argue that it is illegitimate to rescue chance by invoking probabilistic 

resources from outside the known universe. To do so, artificially inflates one’s probabilistic 

resources.  

 
3. The Inflationary Fallacy 

Only probabilistic resources from the known universe may legitimately be employed in 

testing chance hypotheses. In particular, probabilistic resources imported from outside the 

known universe are incapable of overturning the universal probability bound of 10–150. My basic 

argument to support this claim is quite simple, though I need to tailor it to some of the specific 

proposals now current for inflating probabilistic resources. The basic argument is this: It is never 

enough to postulate probabilistic resources merely to prop an otherwise failing chance 

hypothesis. Rather, one needs independent evidence whether there really are enough 

probabilistic resources to render chance plausible.  

Consider, for instance, two state lotteries, both of which have printed a million lottery tickets. 

Let us assume that each ticket has a one in a million probability of winning and that whether one 

ticket wins is probabilistically independent of whether another wins (multiple winners are 

therefore a possibility). Suppose now that one of these state lotteries sells the full one million 

tickets but that the other sells only two tickets. Ostensibly both lotteries have the same number of 

probabilistic resources—the same number of tickets were printed for each. Nevertheless, the 

probabilistic resources relevant for deciding whether the first lottery produced a winner by 

chance greatly exceed those of the second. Probabilistic resources are opportunities for an event 

to happen or be specified. To be relevant to an event, those opportunities need to be actual and 
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not merely possible. Lottery tickets sitting on a shelf collecting dust might just as well never 

have been printed. 

This much is uncontroversial. But let us now turn the situation around. Suppose we know 

nothing about the number of lottery tickets sold and are informed simply that the lottery had a 

winner. Suppose further that the probability of any lottery ticket producing a winner is extremely 

low. Now what can we conclude? Does it follow that many lottery tickets were sold? Hardly. We 

are entitled to this conclusion only if we have independent evidence that many lottery tickets 

were sold. Apart from such evidence we have no way of assessing how many tickets were sold, 

much less whether the lottery was conducted fairly and whether its outcome was due to chance. 

It is illegitimate to take an event, decide for whatever reason that it must be due to chance, and 

then propose numerous probabilistic resources because otherwise chance would be implausible. I 

call this the inflationary fallacy.22  

Stated thus, the inflationary fallacy is readily rejected as a bogus form of argument. 

Nevertheless, it can be nuanced so that the problem inherent in it is mitigated (though not 

eliminated). The problem inherent in the inflationary fallacy is always that it multiplies 

probabilistic resources in the absence of independent evidence that such resources exist. 

Typically, however, when probabilistic resources get inflated, the rationale for inflating them is 

not simply to render chance plausible when otherwise it would be implausible. Hardly anyone is 

so crass as to admit, “I didn’t like the alternatives to chance so I simply decided to invent some 

probabilistic resources.” The rationale for inflating probabilistic resources is always more subtle, 

seeking confirmation in general coherence or consilience considerations even though 

independent evidence is lacking.  

The inflationary fallacy therefore has a crass and a nuanced form. The crass form looks as 

follows: 

Premise 1: Alternatives to chance are for whatever reason unacceptable for explaining 

some event—call that event X. 
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Premise 2: With the probabilistic resources available in the known universe, chance is 

not a reasonable explanation of X. 

Premise 3: If probabilistic resources could be expanded, then chance would be a 

reasonable explanation of X. 

Premise 4: Let there be more probabilistic resources.  

Conclusion: Chance is now a reasonable explanation of X.  

The problem with this argument is Premise 4 (the “fiat” premise), which creates probabilistic 

resources ex nihilo simply to ensure that chance becomes a reasonable explanation.  

The more nuanced form of the inflationary fallacy is on the surface less objectionable. It 

looks as follows: 

Premise 1: There is an important problem, call it Y, that admits a solution as soon as 

one is willing to posit some entity, process, or stuff outside the known 

universe. Call whatever this is that resides outside the known universe Z.  

Premise 2: Though not confirmed by any independent evidence, Z is also not 

inconsistent with any empirical data.   

Premise 3: With the probabilistic resources available in the known universe, chance is 

not a reasonable explanation of some event—call the event X. 

Premise 4: But when Z is added to the known universe, probabilistic resources are 

vastly increased and now suffice to account for X by chance.   

Conclusion: Chance is now a reasonable explanation of X.  

This nuanced form of the inflationary fallacy appears in various guises and has gained 

widespread currency. It purports to solve some problem of general interest and importance by 

introducing some factor Z, which we will call an inflaton.23 By definition, an inflaton will be 

some entity, process, or stuff outside the known universe that in addition to solving some 
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problem also has associated with it numerous probabilistic resources as a by-product. These 

resources in turn help to shore up chance when otherwise chance would seem unreasonable in 

explaining some event. 

 

 
4. Four Widely-Discussed Inflatons 

I want therefore next to consider four inflatons that purport to resolve important problems 

and that have gained wide currency. The inflatons I will consider are these: the bubble universes 

of Alan Guth’s inflationary cosmology, the many worlds of Hugh Everett’s interpretation of 

quantum mechanics, the self-reproducing black holes of Lee Smolin’s cosmological natural 

selection, and the possible worlds of David Lewis’s extreme modal realist metaphysics.24 My 

choice of proposals, though selective, is representative of the forms that the inflationary fallacy 

takes. While I readily admit that these inflatons propose solutions to important problems, I will 

argue that the costs of these solutions outweigh their benefits. In general, inflatons that inflate 

probabilistic resources, so that what was unattributable to chance within the known universe now 

becomes attributable to chance after all, are highly problematic and create more difficulties than 

they solve.  

Let us start with Alan Guth’s inflationary cosmology. Inflationary cosmology posits a very 

brief period of hyper-rapid expansion of space just after the Big Bang. Though consistent with 

general relativity, such expansion is not required. What’s more, the expansion has now stopped 

(at least as far as we can tell within the known universe). Guth introduced inflation to solve such 

problems in cosmology as the flatness, horizon, and magnetic monopole problems. In standard 

Big Bang cosmology the first two of these problems seem to require considerable fine-tuning of 

the initial conditions of the universe whereas the third seems unresolvable if standard Big Bang 

cosmology is combined with grand unified theories. Inflationary cosmology offers to resolve 

these problems in one fell swoop. In so doing, however, the known universe becomes a bubble 
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universe within a vast sea of other bubble universes, and the actual universe now constitutes the 

sea that contains these bubble universes.  

Next let us consider Hugh Everett’s interpretation of quantum mechanics. Everett’s many 

worlds interpretation of quantum mechanics proposes a radical solution to what in quantum 

mechanics is known as the measurement problem. The state function of a quantum mechanical 

system corresponds to a probability distribution that upon measurement assumes a definite value. 

The problem is that any physical system whatsoever can be conceived as a quantum mechanical 

system described by a state function. Now what happens when the physical system in question is 

taken to be the entire universe? Most physical systems one considers are proper subsets of the 

universe and thus admit observers who are outside the system and who can therefore measure the 

system and, as it were, collapse the state function. But when the universe as a whole is taken as 

the physical system in question, where is the observer to collapse the state function?25 Everett’s 

solution is to suppose that the state function does not collapse but rather splits into all different 

possible values that the state function could assume (mathematically this is very appealing—

especially to quantum cosmologists—because it eliminates any break in dynamics resulting from 

state-function collapse). In effect, all possible quantum histories get lived out. Suppose, for 

instance, someone offers me a million dollars to play Quantum Russian Roulette (i.e., a quantum 

mechanical device is set up with six possibilities, each having probability one-sixth, and such 

that a bullet fires into my brain and kills me when exactly one of these possibilities occurs but 

leaves me unharmed otherwise). If I choose to play this game, then for every one quantum world 

in which I get a bullet to the head there are five in which I live happily ever after as a millionaire. 

Next let us consider Lee Smolin’s cosmological natural selection of self-reproducing black 

holes. Smolin’s self-reproducing black holes constitute perhaps the most ambitious of the 

inflatons we will consider. Smolin characterizes his project as explaining how the laws of 

physics have come to take the form they do, but in fact he is presenting a full-blown cosmogony 

in which Darwinian selection becomes the mechanism by which universes are generated and 

flourish. According to Smolin, quantum effects preclude singularities at which time stops. 
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Consequently, time does not stop in a black hole but rather “bounces” in a new direction, 

producing a region of space-time inaccessible to ours except at the moment of its origination. 

Moreover, Smolin contends that during a “bounce” the laws of nature change their parameters 

but not their general form. Consequently, the formation of black holes follows an evolutionary 

algorithm in which parameters get continually tightened to maximize the production of black 

holes. Within Smolin’s scheme the known universe is but one among innumerable black holes 

that have formed by this process and that in turn generate other black holes. Cosmological 

natural selection accounts not only for the generation of universes but also for their fine tuning 

and the possibility of such structures as life.  

Finally, let us consider the possible worlds of David Lewis’s extreme modal realist 

metaphysics. Lewis, unlike Guth, Everett, and Smolin, is not a scientist but a philosopher and in 

particular a metaphysician. For Lewis any logically possible world is as real as our world, which 

he calls the actual world. It is logically possible for a world to consist entirely of a giant 

tangerine. It is logically possible that the laws of physics might have been different, not only in 

their parameters but also in their basic form. It is logically possible that instead of turning to 

mathematics I might have become a rock and roll singer. For each of these logical possibilities 

Lewis contends that there are worlds as real as ours in which those possibilities are actualized. 

The only difference between those worlds and ours is that we happen to inhabit our world—that 

is what makes our world the actual world. Lewis’s view is known as extreme modal realism. 

Modal realism asserts that logical possibilities are in some sense real (perhaps as abstractions in 

a mathematical space). Extreme modal realism emphasizes that logical possibilities are real in 

exactly the same way that the world we inhabit is real. Why does Lewis hold this view? 

According to him, possible worlds are indispensable for making sense of certain key 

philosophical problems, notably the analysis of counterfactual conditionals. What’s more, he 

finds that all attempts to confer on possible worlds a status different from the actual world are 

incoherent (he refers to these disparagingly as ersatz possible worlds and finds them poor 

substitutes for his full-blown possible worlds).  
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I have provided only the briefest summary of the views of Alan Guth, Hugh Everett, Lee 

Smolin, and David Lewis. The problems these thinkers raise are important, and the solutions 

they propose need to be taken seriously. Moreover, except for David Lewis’s possible worlds, 

which are purely metaphysical, the other three inflatons considered make contact with empirical 

data. Lee Smolin even contends that his theory of cosmological natural selection has testable 

consequences—he even runs through several possible tests. The unifying theme in Smolin’s tests 

is that varying the parameters for the laws of physics should tend to decrease the rate at which 

black holes are formed in the known universe. It is a consequence of Smolin’s theory that for 

most universes generated by black holes, the parameters of the laws of physics should be 

optimally set to facilitate the formation of black holes. We ourselves are therefore highly likely 

to be in a universe where black hole formation is optimal. My own view is that our 

understanding of physics needs to proceed considerably further before we can establish 

convincingly that ours is a universe that optimally facilitates the formation of black holes. But 

even if this could be established now, it would not constitute independent evidence that a black 

hole is capable of generating a new universe. Smolin’s theory, in positing that black holes 

generate universes, would explain why we are in a universe that optimally facilitates the 

formation of black holes. But it is not as though we would ever have independent evidence for 

Smolin’s theory, say by looking inside a black hole and seeing whether there is a universe in it. 

Of all the objects in space (stars, planets, comets, etc.) black holes divulge the least amount of 

information about themselves.  

 

 
5. Explanatory Power and Independent Evidence 

Each of the four inflatons considered here possesses explanatory power in the sense that each 

explains certain relevant data and thereby solves some problem of general interest and 

importance. These data are said to confirm or provide epistemic support for an inflaton insofar as 

it adequately explains the relevant data and does not conflict with other recognized data. What’s 
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more, insofar as an inflaton does not adequately explain the relevant data, it lacks explanatory 

power and is disconfirmed. In general, therefore, explanatory power entails testability in the 

weak sense that if a claim fails adequately to explain certain relevant data, it is to be rejected 

(thus failing the test).  

Nevertheless, even though the four inflatons considered here each possesses explanatory 

power, none of them possesses independent evidence for its existence. Independent evidence is 

by definition evidence that helps establish a claim apart from any appeal to the claim’s 

explanatory power. The demand for independent evidence is neither frivolous nor tendentious. 

Instead, it is a necessary constraint on theory construction so that theory construction does not 

degenerate into total free-play of the mind.26 Consider for instance the “gnome theory of 

friction.” Suppose a physicist claims that the reason objects do not slide endlessly across 

surfaces is because tiny invisible gnomes inhabit all surfaces and push back on any objects 

pushed along the surfaces. What’s more, the rougher a surface, the more gnomes inhabit it, and 

consequently the greater the resistance to an object moving across the surface. Suitably 

formulated, the gnome theory of friction can explain how objects move across surfaces just as 

accurately as current physical theory. So why do we not take the gnome theory of friction 

seriously? One reason (though not the only reason—the gnome theory has many more problems 

than described here) is the absence of independent evidence for gnomes.  

Independent evidence and explanatory power need to work in tandem, and for one to outpace 

the other typically leads to difficulties. In spinning out their theories, conspiracy theorists place 

all their emphasis on explanatory power but ignore the demand for independent evidence. In 

enumerating countless low-level facts, crude inductivists place all their emphasis on independent 

evidence and thus miss the bold hypotheses and intuitive leaps that make for explanatory power 

and thus are capable of tying together their disparate facts. Independent evidence is the strict 

disciplinarian to explanatory power’s carefree genius. Each is needed to balance the other. My 

favorite story illustrating the interplay between the two is due to John Leslie.27 Suppose an arrow 

is fired at random into a forest and hits Mr. Brown. To explain such a chance occurrence it 
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would suffice for the forest to be full of people. The forest being full of people therefore 

possesses explanatory power. Even so, this explanation remains but a speculative possibility 

until it is supported by independent evidence of people other than Mr. Brown in the forest.  

The problem with the four inflatons considered above is that none of them admits 

independent evidence. The only thing that confirms them is their ability to explain certain data or 

resolve certain problems. With regard to inflationary cosmology, we have no direct experience of 

hyper-rapid inflation nor have we observed any process that could reasonably be extrapolated to 

hyper-rapid inflation. With regard to the many-worlds interpretation of quantum mechanics, we 

always experience exactly one world and have no direct access to alternate parallel worlds. If 

there is any access at all to these worlds, it is indirect and circumstantial. Indeed, to claim that 

quantum interference signals the influence of parallel worlds is to impose a highly speculative 

interpretation on the data of quantum mechanics that is far from compelling.28 With regard to 

black hole formation, there is no way for anybody on the outside to get inside a black hole, 

determine that there actually is a universe inside there, and then emerge intact to report as much. 

With regard to possible worlds, they are completely causally separate from each other—other 

possible worlds never were and never can be accessible to us, either directly or indirectly.  

The absence of independent evidence for these inflatons makes the problem of 

underdetermination especially acute for them. In general, when a hypothesis explains certain 

data, there are other hypotheses that also explain the data. In this way, data are said to 

underdetermine hypotheses. Nonetheless, it may be that one hypothesis explains the data better 

than the others so that it is possible to adjudicate among hypotheses simply on the basis of 

explanatory power. On the other hand, it may be that competing hypotheses exhibit identical 

explanatory power or that advocates of competing hypotheses claim that their preferred 

hypotheses exhibit the greater explanatory power. In either case, independent evidence will be 

required to adjudicate among the hypotheses. With the four inflatons here considered, no such 

independent evidence is forthcoming. 
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I want therefore next to examine these four inflatons in relation to design to see whether 

design might be amenable to independent evidence in a way that the four inflatons are not. As I 

defined it, an inflaton is some entity, process, or stuff outside the known universe that helps 

explain certain data and thereby resolve some problem. Notably absent from the inflatons 

described by Guth, Everett, Smolin, and Lewis is a designer. Their inflatons are fully compatible 

with naturalism and thoroughly nonteleological. Now the interesting thing is that a designer, 

especially when fleshed out into a full-blown theistic deity, can be employed to resolve the very 

problems that the four inflatons considered here were meant to resolve. The fine-tuning of the 

universe and the form of the laws of physics that are central to Guth’s and Smolin’s concerns can 

be attributed to a divine act of creation. Moreover, such a deity could collapse the state function 

of the universe and thereby resolve the measurement problem of quantum mechanics when this 

problem is applied to the universe taken as a whole. And finally, such a deity, by being suitably 

omniscient and thus possessing what philosophers of religion call “middle knowledge,” could 

provide a semantics for counterfactual conditionals and resolve many of the other problems for 

which David Lewis thinks he requires possible worlds.29 

Now I want to stress that I am not advocating these theistic alternatives to the four inflatons 

considered above (I personally think there is something to the theistic fine-tuning arguments, but 

I am no fan of middle knowledge and have serious doubts about God’s role as a state-function 

collapser). My point, rather, is this: Given that there are design-theoretic alternatives to the 

inflatons considered here and given that such alternatives immediately raise the problem of 

underdetermination, the only way to resolve this problem is via independent evidence. So let me 

pose the question: Is there independent evidence that would allow us to distinguish the four 

inflatons considered above from a design-theoretic alternative? We have already seen that there 

is no independent evidence that supports these four inflatons. But could there be independent 

evidence that supports a design-theoretic alternative and in so doing also disconfirms these four 

inflatons? I am going to argue that there is.  

 



 

17 

 
6. Arthur Rubinstein—Consummate Pianist or Lucky Poseur? 

The four inflatons considered here allow for unlimited probabilistic resources. Now the 

problem with unlimited probabilistic resources is that they allow us to explain absolutely 

everything by reference to chance—not just natural objects that actually did result by chance and 

not just natural objects that look designed, but also all artificial objects that are in fact designed. 

In effect, unlimited probabilistic resources collapse the distinction between apparent design and 

actual design and make it impossible to attribute anything with confidence to actual design. Was 

Arthur Rubinstein a great pianist or was it just that whenever he sat at the piano, he happened by 

chance to put his fingers on the right keys to produce beautiful music? It could happen by 

chance, and there is some possible world where everything is exactly as it is in this world except 

that the counterpart to Arthur Rubinstein cannot read music and happens to be incredibly lucky 

whenever he sits at the piano. Examples like this can be multiplied. There are possible worlds in 

which I cannot do arithmetic and yet sit down at my Macintosh computer and write probabilistic 

tracts about intelligent design. Perhaps Shakespeare was a genius. Perhaps Shakespeare was an 

imbecile who just by chance happened to string together a long sequence of apt phrases. 

Unlimited probabilistic resources ensure not only that we will never know, but also that we have 

no rational basis for preferring one to the other. 

Given unlimited probabilistic resources, there is only one way to rebut this anti-inductive 

skepticism, and that is to admit that while unlimited probabilistic resources allow bizarre 

possibilities like this, these possibilities are nonetheless highly improbable in the little patch of 

reality that we inhabit. Unlimited probabilistic resources make bizarre possibilities unavoidable 

on a grand scale. The problem is how to mitigate the craziness entailed by them, and the only 

way to do this once such bizarre possibilities are conceded is to render them improbable on a 

local scale. Thus in the case of Arthur Rubinstein, there are worlds where someone named 

Arthur Rubinstein is a world famous pianist and does not know the first thing about music. But it 

is vastly more probable that in worlds where someone named Arthur Rubinstein is a world 
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famous pianist, that person is a consummate musician. What’s more, induction tells us that ours 

is such a world. 

But can induction really tell us that? How do we know that we are not in one of those bizarre 

worlds where things happen by chance that we ordinarily attribute to design? Consider further 

the case of Arthur Rubinstein. Imagine it is January 1971 and you are at Orchestra Hall in 

Chicago listening to Arthur Rubinstein perform. As you listen to him perform Liszt’s 

“Hungarian Rhapsody,” you think to yourself, “I know the man I’m listening to right now is a 

wonderful musician. But there’s an outside possibility that he doesn’t know the first thing about 

music and is just banging away at the piano haphazardly. The fact that Liszt’s ‘Hungarian 

Rhapsody’ is pouring forth would thus merely be a happy accident. Now if I take seriously the 

existence of other worlds, then there is some counterpart to me pondering these very same 

thoughts, only this time listening to the performance of someone named Arthur Rubinstein who 

is a complete musical ignoramus. How, then, do I know that I’m not that counterpart?”30 

Indeed, how do you know that you are not that counterpart? First off, let us be clear that the 

Turing Test is not going to come to the rescue here by operationalizing the two Rubinsteins and 

rendering them operationally indistinguishable. According to the Turing Test, if a computer can 

simulate human responses so that fellow humans cannot distinguish the computer’s responses 

from an individual human’s responses, then the computer passes the Turing Test and is adjudged 

intelligent.31 This operationalizing of intelligence has its own problems, but even if we let them 

pass, success at passing the Turing Test is clearly not what is at stake in the Rubinstein example. 

The computer that passes the Turing Test presumably “knows” what it is doing (having been 

suitably programmed) whereas the Rubinstein who plays successful concerts by randomly 

positioning fingers on the keyboard does not have a clue. Think of it this way: Imagine a 

calculating machine whose construction guarantees that it performs arithmetic correctly and 

imagine another machine that operates purely by random processes. Suppose we pose the same 

arithmetic problems to both machines and out come identical answers. It would be inappropriate 

to assign arithmetic prowess to the random device, even though it is providing the right answers, 
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because that is not its proper function—it is simply by chance happening upon the right answers. 

On the other hand, it is entirely appropriate to attribute arithmetic prowess to the other machine 

because it is constructed to perform arithmetic calculations accurately—that is its proper 

function. Likewise, with the real Arthur Rubinstein and his chance-performing counterpart, the 

real Arthur Rubinstein’s proper function is, if you will, to perform music with skill and 

expression whereas the counterpart is just a lucky poseur. When Turing operationalized 

intelligence, he clearly meant intelligence to be a proper function of a suitably programmed 

computer and not merely a happy accident.32  

How, then, do you know that you are listening to Arthur Rubinstein the musical genius and 

not Arthur Rubinstein the lucky poseur? To answer this question, let us ask a prior question: 

How did you recognize in the first place that the man called Rubinstein performing in Orchestra 

Hall was a consummate musician? Reputation, formal attire, and famous concert hall are 

certainly giveaways, but they are neither necessary nor sufficient. Even so, a necessary condition 

for recognizing Rubinstein’s musical skill (design) is that he was following a prespecified 

concert program, and in this instance that he was playing Liszt’s “Hungarian Rhapsody” note for 

note (or largely so—Rubinstein was not immune to mistakes). In other words, you recognized 

that Rubinstein’s performance exhibited specified complexity. Moreover, the degree of specified 

complexity exhibited enabled you to assess just how improbable it was that someone named 

Rubinstein was playing the “Hungarian Rhapsody” with éclat but did not have a clue about 

music. Granted, you may have lacked the technical background to describe the performance in 

these terms, but the recognition of specified complexity was there nonetheless, and without that 

recognition there would have been no way to attribute Rubinstein’s playing to design rather than 

chance.  
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7. Independent Evidence for a Designer 

Specified complexity is how we eliminate bizarre possibilities in which chance is made to 

account for things that we would ordinarily attribute to design. What’s more, specified 

complexity is how we assess the improbability of those bizarre possibilities and therewith justify 

eliminating their chance occurrence. That being the case (and it certainly is the case for human 

artifacts), on what basis could we attribute chance to natural phenomena that exhibit specified 

complexity? Let us be clear that inflating probabilistic resources does not just diminish a 

universal probability bound and make it harder to attribute design—inflating probabilistic 

resources is not a matter of replacing one universal probability bound by another that is more 

stringent. Inflating probabilistic resources eliminates universal probability bounds entirely—the 

moment one posits unlimited probabilistic resources, anything of nonzero probability becomes 

certain (probabilistically this follows from the Strong Law of Large Numbers33). It seems, 

however, that in practical life we do allow for probability bounds to assess improbability and 

therewith specified complexity. A sentence or two verbatim repeated by another author can be 

enough to elicit the charge of plagiarism. It could happen by chance and given unlimited 

probabilistic resources there are patches of reality where it did happen by chance. But we do not 

buy it—at least not for our patch of reality. In practical life we tend not to be very conservative 

in setting probability bounds. They tend to be quite large, and certainly much larger than the 

universal probability bound of 10–150 that I have been advocating.   

The difficulty confronting unlimited probabilistic resources can now be put quite simply: 

There is no principled way to discriminate between using unlimited probabilistic resources to 

retain chance and using specified complexity to eliminate chance. You can have one or the other, 

but you cannot have both. And the fact is, we already use specified complexity to eliminate 

chance. Let me stress that there is no principled way to make the discrimination. It is, for 

instance, possible to invoke naturalism as a philosophical presupposition and use it to 

discriminate between using probabilistic resources to retain chance when designers unacceptable 

to naturalism are implicated (e.g., God) and using specified complexity to eliminate chance when 
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designers acceptable to naturalism are implicated (e.g., Francis Crick’s space aliens who seed the 

universe with life34). Thus for artifactual objects exhibiting specified complexity and for which 

an embodied intelligence could plausibly have been involved, we would attribute design; but for 

natural objects exhibiting specified complexity and for which no embodied intelligence could 

plausibly have been involved, we would invoke unlimited probabilistic resources and thus 

attribute chance (or perhaps simply plead ignorance). But this is entirely arbitrary. Indeed, the 

problem of unlimited probabilistic resources throws naturalism itself into question, and it does 

no good to invoke naturalism to resolve the problem.  

It is important to understand that I am not arguing that the inflation of probabilistic resources 

entails anti-inductive skepticism. Indeed, my argument here is not anti-inductive but pro-

specified complexity. I did offer anti-inductive argument in chapter 6 of The Design Inference. 

My focus there was on the set of all logically possible worlds, and thus on worlds that instantiate 

every possible set of natural laws. In that case, inflating probabilistic resources entails inductive 

skepticism since there are far more worlds that agree with our world up to the present and go 

haywire afterward than there are worlds that continue to obey the regularities observed thus far. 

My argument here, however, allows that the worlds that inflate probabilistic resources obey laws 

of the same form as the laws of our universe. In that case, the vast majority of worlds in which 

Rubinstein delivers an exquisite performance are worlds in which Rubinstein is a skilled 

musician rather than a lucky poseur. But to convince ourselves for such worlds that Rubinstein is 

indeed a skilled musician rather than a lucky poseur requires specified complexity. Even with 

unlimited probabilistic resources, we need to distinguish design from nondesign, and specified 

complexity is how we do it. Consequently, there is no principled way to discriminate between 

using unlimited probabilistic resources to retain chance and using specified complexity to 

eliminate chance. And since we already use specified complexity to eliminate chance, invoking 

unlimited probabilistic resources to retain chance is not a defensible option. I am not arguing that 

inflating probabilistic resources destroys induction. I am arguing that inflating probabilistic 
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resources does not destroy specified complexity. In particular, probabilistic resources from 

outside the known universe are irrelevant to assessing specified complexity.35 

We are now in a position to see why a designer outside the known universe could in principle 

be supported by independent evidence whereas the inflatons introduced by Guth, Everett, 

Smolin, and Lewis cannot. We already have experience of human and animal intelligences 

generating specified complexity. If we should ever discover evidence of extraterrestrial 

intelligence, a necessary feature of that evidence would be specified complexity. Thus, when we 

find evidence of specified complexity in nature for which no embodied, reified, or evolved 

intelligence could plausibly have been involved, it is a straightforward extrapolation to conclude 

that some unembodied intelligence must have been involved. Granted, this raises the question of 

how such an intelligence could coherently interact with the physical world.36 But to deny this 

extrapolation merely because of a prior commitment to naturalism is not defensible. There is no 

principled way to distinguish between using specified complexity to eliminate chance in one 

instance and then in another invoking unlimited probabilistic resources to render chance 

plausible.  

Design allows for the possibility of independent evidence whereas the inflatons of Guth, 

Everett, Smolin, and Lewis do not. Specified complexity can be a point of contact between the 

known universe and an intelligence outside it—designers within the universe already generate 

specified complexity and a designer outside could potentially do the same. That is what allows 

for independent evidence to support unembodied designers. Provided nature supplies us with 

instances of specified complexity that cannot reasonably be attributed to any embodied 

intelligence,37 the inference to an unembodied intelligence becomes compelling and any 

instances of specified complexity used to support that inference can rightly be regarded as 

independent evidence. By contrast, the inflatons of Guth, Everett, Smolin, and Lewis provide no 

such palpable connection with the known universe. Indeed, what in our actual experience can 

straightforwardly be extrapolated to hyper-rapid expansion of space, quantum many worlds, 

cosmological natural selection, and causally inaccessible possible worlds? Is it, for instance, a 
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straightforward extrapolation that takes us from biological natural selection of carbon-based life 

to cosmological natural selection of black holes? To be sure, there is an extrapolation here, but 

one where all meaningful analogies with actual experience break down.  

Three crucial questions now face design: (1) Is specified complexity exhibited in any natural 

systems where no embodied intelligence could plausibly have been involved? (2) If so, does the 

design apparent in such systems match up meaningfully with known designs due to known 

embodied designers? (3) Does a theory of design that treats specified complexity as a reliable 

marker of intelligence possess sufficient explanatory power to render it interesting and fruitful 

for science? In No Free Lunch I argue for an affirmative answer to each of these three 

questions.38  

 

 
8. Closing off Quantum Loopholes 

In concluding this paper, I want to address one possible worry that might remain. I have 

argued that it does no good to look outside the known universe to increase one’s probabilistic 

resources. But what about looking inside the known universe for additional probabilistic 

resources? Take, for instance, quantum computation. Peter Shor has described an algorithm for 

quantum computers that is capable of factoring numbers vastly larger than can be factored with 

conventional computers (thus threatening cryptographic schemes that depend on factorization 

constituting a hard computational problem).39 David Deutsch therefore asks,  

When Shor’s algorithm has factorized a number, using 10500 or so times the 

computational resources that can be seen to be present, where was the number factorized? 

There are only about 1080 atoms in the entire visible universe, an utterly minuscule 

number compared with 10500. So if the visible universe were the extent of physical reality, 

physical reality would not even remotely contain the resources required to factorize such 

a large number. Who did factorize it, then? How, and where, was the computation 

performed?40 
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In raising these questions, Deutsch is advocating a many-worlds interpretation of quantum 

mechanics. This interpretation is not mandated. Indeed, interpretations of quantum mechanics 

abound and all of them, insofar as they are coherent and empirically adequate, are empirically 

indistinguishable. As Anthony Sudbery remarks, “An interpretation of quantum mechanics is 

essentially an answer to the question ‘What is the state vector?’ Different interpretations cannot 

be distinguished on scientific grounds—they do not have different experimental consequences; if 

they did they would constitute different theories.”41 Yet if we resist the many-worlds 

interpretation of quantum mechanics and the unlimited probabilistic resources this interpretation 

provides, does not quantum mechanics, and quantum computation in particular, invite a huge 

number of probabilistic resources into our own known universe? I submit that it does not. True, 

quantum computation may alter the computational resources relevant to assessing the security of 

cryptosystems against brute force attacks that enlist the entire universe as a giant quantum 

computer. As a result, universal computation bounds will diverge from universal probability 

bounds—in the past they were largely identical because they were based on conventional 

computing whereas now they would diverge because of the increased computational resources 

due to quantum computing.  

Even so, quantum computation provides no justification for altering the universal probability 

bound of 10–150. To see this, let us pose a related but different question from the one raised by 

Shor. Shor asked how large a number could be factored with quantum computers as opposed to 

conventional computers. He found that quantum computers vastly increased the size of the 

numbers that could be factored. But now let us ask how many numbers could be factored with 

quantum computers as opposed to conventional computers. To factor a given number on either a 

conventional or a quantum computer means entering it respectively as a specific sequence of bits 

or qubits, performing the relevant computation, and then identifying a specific output sequence 

as the answer. If we now ignore computation times, it follows that in terms of the sheer quantity 

of numbers that can be factored, quantum computation offers no advantage over conventional 

computation—specific numbers still have to be inputted and outputted. Input and output 
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themselves take time, space, and material, and there are no more than 10150 specific numbers that 

computers, whether conventional or quantum, can ever input and output.  

The lesson here is that specified complexity, precisely because it requires items of 

information to be specifically identified, provides no opening for quantum computation to 

exploit quantum parallelism or superposition and thereby generate specifications. We can 

imagine a quantum memory register of 1,000 qubits in a superposition of states representing 

every possible sequence of 0s and 1s of length 1,000. Nevertheless, this memory register is 

incapable of specifying even a single conventional bit string of length 1,000 until a measurement 

is taken and the superposition of states is projected onto an eigenstate.  

Though quantum computation offers to dramatically boost computational power by allowing 

massively parallel computations, it does so by keeping computational states indeterminate until 

the very end of a computation. This indeterminateness of computational states takes the form of 

quantum superpositions, which are deliberately exploited in quantum computation to facilitate 

parallel computation. The problem with quantum superpositions, however, is that they are 

incapable of concretely realizing specifications. A quantum superposition is an indeterminate 

state. A specification is a determinate state. Measurement renders a quantum superposition 

determinate by producing an eigenstate, but once it does, we are no longer dealing with a 

quantum superposition. Because quantum computation thrives precisely where it exploits 

superpositions and avoids specificity, it offers no means for boosting the number of 

specifications that can be concretely realized in the known universe.42 

Is there any place else to look for additional probabilistic resources inside the known 

universe? According to Robin Collins, quantum mechanics offers still one other loophole for 

inflating probabilistic resources and thereby undercutting specified complexity as a reliable 

indicator of design. Collins notes that the state function of a quantum mechanical system can 

take continuous values and thus assume infinitely many possible states. From this he draws the 

following conclusion: “This means that in Dembski’s scheme one could only absolutely 

eliminate chance for events of zero probability!”43 Presumably he thinks that because quantum 
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systems can produce infinitely many possible events, this means that quantum systems also 

induce infinitely many probabilistic resources. And since infinitely many probabilistic resources 

coincide with a probability threshold of zero, my scheme could therefore only eliminate chance 

for events of probability zero. The problem here is that Collins fails to distinguish between the 

range of possible events that might occur and the opportunities for a given event to occur or be 

specified. A reference class of possibilities may well be infinite (as in the case of certain 

quantum mechanical systems). But the opportunities for sampling from such a reference class 

and thereby inducing information are always finite and extremely limited. Probabilistic resources 

always refer to the opportunities for sampling from a range of possible events. The range of 

possible events itself might well be infinite. But this has no bearing on the probabilistic 

resources associated with a given event in that range.  

It appears, then, that we are back to our own known little universe, with its very limited 

number of probabilistic resources but therewith also its increased possibilities for detecting 

design. This is one instance where less is more, where having fewer probabilistic resources 

opens possibilities for knowledge and discovery that would otherwise be closed. Limited 

probabilistic resources enrich our knowledge of the world by enabling us to detect design where 

otherwise it would elude us. At the same time, limited probabilistic resources protect us from the 

unwarranted confidence in natural causes that unlimited probabilistic resources invariably seem 

to engender. In short, limited probabilistic resources eliminate the chance of the gaps.  
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