Random Sequences Are an Abundant Source of Bioactive RNAs or Peptides.

    • Rafik Neme,
    • Cristina Amador,
    • Burcin Yildirim,
    • Ellen McConnell &
    • Diethard Tautz

Abstract

It is generally assumed that new genes arise through duplication and/or recombination of existing genes. The probability that a new functional gene could arise out of random non-coding DNA is so far considered to be negligible, as it seems unlikely that such an RNA or protein sequence could have an initial function that influences the fitness of an organism. Here, we have tested this question systematically, by expressing clones with random sequences in Escherichia coli and subjecting them to competitive growth. Contrary to expectations, we find that random sequences with bioactivity are not rare. In our experiments we find that up to 25% of the evaluated clones enhance the growth rate of their cells and up to 52% inhibit growth. Testing of individual clones in competition assays confirms their activity and provides an indication that their activity could be exerted by either the transcribed RNA or the translated peptide. This suggests that transcribed and translated random parts of the genome could indeed have a high potential to become functional. The results also suggest that random sequences may become an effective new source of molecules for studying cellular functions, as well as for pharmacological activity screening.

 

References

  1. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    CAS Article Google Scholar

  2. Tautz, D. The discovery of de novo gene evolution. Perspect. Biol. Med. 57, 149–161 (2014).

    Article Google Scholar

  3. Chothia, C. Proteins. One thousand families for the molecular biologist. Nature 357, 543–544 (1992).

    CAS Article Google Scholar

  4. Lupas, A. N., Ponting, C. P. & Russell, R. B. On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? J. Struct. Biol. 134, 191–203 (2001).

    CAS Article Google Scholar

  5. Orengo, C. A. & Thornton, J. M. Protein families and their evolution—a structural perspective. Annu. Rev. Biochem. 74, 867–900 (2005).

    CAS Article Google Scholar

  6. Carvunis, A. R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    CAS Article Google Scholar

  7. Reinhardt, J. A. et al. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences. PLoS Genet. 9, e1003860 (2013).

    Article Google Scholar

  8. Zhao, L., Saelao, P., Jones, C. D. & Begun, D. J. Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343, 769–772 (2014).

    CAS Article Google Scholar

  9. Neme, R. & Tautz, D. Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. eLife 5, e09977 (2016).

    Article Google Scholar

  10. Tautz, D. & Domazet-Loso, T. The evolutionary origin of orphan genes. Nat. Rev. Genet. 12, 692–702 (2011).

    CAS Article Google Scholar

  11. Xie, C. et al. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet. 8, e1002942 (2012).

    CAS Article Google Scholar

  12. Ruiz-Orera, J., Messeguer, X., Subirana, J. A. & Alba, M. M. Long non-coding RNAs as a source of new peptides. Elife 3, e03523 (2014).

    Article Google Scholar

  13. Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

    CAS Article Google Scholar

  14. Stepanov, V. G. & Fox, G. E. Stress-driven in vivo selection of a functional mini-gene from a randomized DNA library expressing combinatorial peptides in Escherichia coliMol. Biol. Evol. 24, 1480–1491 (2007).

    CAS Article Google Scholar

  15. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article Google Scholar

  16. Keefe, A. D. & Szostak, J. W. Functional proteins from a random-sequence library. Nature 410, 715–718 (2001).

    CAS Article Google Scholar

  17. Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. BBA-Proteins Proteom. 1804, 1231–1264 (2010).

    CAS Article Google Scholar

  18. Tompa, P., Schad, E., Tantos, A. & Kalmar, L. Intrinsically disordered proteins: emerging interaction specialists. Curr. Opin. Struct. Biol. 35, 49–59 (2015).

    CAS Article Google Scholar

  19. Cumberworth, A., Lamour, G., Babu, M. M. & Gsponer, J. Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem. J. 454, 361–369 (2013).

    CAS Article Google Scholar

  20. Tompa, P., Davey, N. E., Gibson, T. J. & Babu, M. M. A million peptide motifs for the molecular biologist. Mol. Cell 55, 161–169 (2014).

    CAS Article Google Scholar

  21. Sims, D. et al. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol. 12, R104 (2011).

    CAS Article Google Scholar

  22. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS Article Google Scholar

  23. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).

    CAS Article Google Scholar

  24. Sedlazeck, F. J., Rescheneder, P. & von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    CAS Article Google Scholar

  25. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article Google Scholar

  26. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS Article Google Scholar

  27. Xiao, N., Cao, D. S., Zhu, M. F. & Xu, Q. S . protr/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics 31, 1857–1859 (2015).

    CAS Article Google Scholar

Acknowledgements

We thank S. Künzel for sequencing and E. Özkurt for contributions during her rotation project. The project was financed through an ERC advanced grant to D.T. (NewGenes—322564).

Author information

Affiliations

Contributions

R.N. and D.T. designed the experiment, C.A. constructed the library, C.A., B.Y. and E.M. conducted the experiments, R.N. did the bioinformatic analysis, and R.N. and D.T. wrote the paper.

Corresponding author

Correspondence to Diethard Tautz.

Ethics declarations

Competing interests

The work described in this publication is subject to patent application by the Max-Planck Society.

Link collected : https://www.nature.com/articles/s41559-017-0127